Multi-tasking multi-machine scheduling system for multi-stage multi-criteria production

Author:

Liu Shao-Chen,Chen Yu-Ren,Kuo Cheng-Ju,Lin Tzu-Yu,Ting Kuo-Cheng,Yang Don-Lin,Chen Hsi-Min,Chen Yi-Chung

Abstract

In recent years, many major manufacturers have been incorporating Industry 4.0 technologies such as preventive fault detection, automated scheduling algorithms, and component management to increase productivity and reduce production costs. Achieving this objective requires a substantial amount of working capital to acquire large quantities of new machinery, equipment to extract data from the machinery, and high-priced big data analysis software. However, most factories in the world are small-or medium-sized companies and have not enough capital to replace their machinery or purchase big data analysis software. It is therefore almost impossible for these factories to reach the goal of Industry 4.0. Furthermore, most of the conventional automated production scheduling methods only consider a single criterion in scheduling, which is not applicable for actual situations. This study therefore proposed a multi-tasking multi-machine scheduling system for multi-stage multi-criteria production to address various shortcomings in existing methods. To achieve this goal, we proposed a novel concept based on skyline queries to assist in the scheduling process. Also, a data structure of "heap" is applied in this work to accelerate the scheduling process. The experimental results demonstrated the validity of the proposed approach.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3