Numerical investigation on the forming behaviour of stainless/carbon steel bimetal composite

Author:

Li Zhou,Zhao Jingwei,Zhang Qingfeng,Jiao Sihai,Jiang Zhengyi

Abstract

Bimetal composites have wide applications due to their excellent overall performance and relatively low comprehensive cost. The aim of this study is to investigate the forming behaviour of stainless/carbon steel bimetal composite during stamping by finite element method (FEM). In this work, the bonding interface of bimetal composite sheet was assumed to be perfect without delamination during the plastic forming process for simplicity. Uniaxial tensile tests on base metal (carbon steel) and compositing metal (stainless steel) were first carried out, respectively, in order to obtain the tensile properties of each of the component materials required in the forming simulation. Processing variables, including the layer stacking sequence, relative thickness ratios of two layers and friction were considered, and their effects on the distributions of circumferential stress and thickness strain were analysed. The bimetal composite sheet was set as the eight-node solid elements in the developed FEM model, which is effective for evaluating the distributions of circumferential stress and thickness strain, and predicting the high-risk region of necking during the stamping of bimetal composites. The simulation results can be used as an evaluation indicator of the capability of forming machine to ensure the bimetal composite can be safely formed.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Practically Efficient Attribute-based Encryption for Compartmented Access Structures;Proceedings of the 17th International Joint Conference on e-Business and Telecommunications;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3