Condition monitoring for the quadruple water tank system using H-infinity Kalman Filtering

Author:

Rigatos Gerasimos,Serpanos Dimitrios,Siadimas Vasilios,Busawon Krishna,Gao Zhiwei,Siano Pierluigi,Abbaszadeh Masoud

Abstract

The problem of statistical fault diagnosis for the quadruple watertanks system is examined. The solution of the fault diagnosis problem for the dynamic model of the four-water tanks system is a non-trivial case, due to nonlinearities and the system’s multivariable structure. In the article’s approach, the system’s dynamic model undergoes first approximate linearization around a temporary operating point which is recomputed at each sampling period. The linearization procedure relies on Taylor series expansion and on the computation of the Jacobian matrices of the state-space description of the system. The H-infinity Kalman Filter is used as a robust state estimator for the approximately linearized model of the quadruple water tanks system. By comparing the outputs of the H-infinity Kalman Filter against the outputs measured from the real water tanks system the residuals sequence is generated. It is concluded that the sum of the squares of the residuals’ vectors, being weighted by the inverse of the associated covariance matrix, stands for a stochastic variable that follows the χ2 distribution. As a consequence, a statistical method for condition monitoring of the quadruple water tanks system is drawn, by using the properties of the χ2 distribution and the related confidence intervals. Actually, normal functioning can be ensured as long as the value of the aforementioned stochastic variable stays within the previously noted confidence intervals. On the other side, one can infer the malfunctioning of the quadruple water tanks system with a high level of certainty (e.g. of the order of 96% to 98%), when these confidence intervals are exceeded. The article’s method allows also for fault isolation, that is for identifying the specific component of the quadruple water tanks system that has been subject to fault or cyber-attack.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3