Assessment on Structural Integrity of In-service Machine Using De-noised Vibrational Modal Data and Artificial Neural Network

Author:

Ong Zhi Chao,Yap Ee Teng,Ismail Zubaidah,Khoo Shin Yee

Abstract

The recent oil price drop creates a demand for swift action within oil and gas industry to shift focus from increasing daily production rates, to optimizing existing assets in achieving growth. Industrial machinery, one of the industry’s key asset many times failed due to high amplitude vibration that contributes to accelerated wear and tear and subsequently results in high cycle fatigue failure. As such there is a need to develop a structural integrity assessment for in–service machinery for continuous and safe operation. Vibration–based method such as Experimental Modal Analysis (EMA) is widely used for damage detection on civil and piping system under stationary environment. However, in industrial applications, system shutdown is very costly. EMA is also undesirable in this case due to the dominant ambient and system disturbances on the in–service system. An alternative method called Impact-Synchronous Modal Analysis (ISMA) is developed to perform modal analysis under noisy environment. Applying the ISMA technique in de-noising the non–synchronous disturbances at upstream could generate a cleaner and static–like modal data downstream for analysis. Artificial Neuron Networks (ANN) is then applied extensively in structural damage identification purposes based on changes in modal data due to its excellent pattern recognition ability. By leveraging on the latest technologies, i.e. ISMA and ANN as proposed, it allows real–time monitoring of assets, in this case, the machines, as well as the ability to transform continuous streams of data into useful information to predict damages.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3