The effect of third principal stress in the measurement of residual stresses by hole-drilling method

Author:

Halabuk David,Navrat Tomas

Abstract

One of the most popular and widely used technique for measuring residual stresses is the hole-drilling method. By this method, it is possible to evaluate only biaxial residual stresses located in plane parallel to the surface, but some processes produce a triaxial stress state. For this reason, the evaluation of triaxial stress state by the method used for biaxial state was assessed in this paper. A hole-drilling experiment was simulated by the finite element method for two different stress states. The first stress state considered constant residual stresses in all directions. The second one considered constant residual stresses in a plane parallel to the surface and the residual stress in a direction perpendicular to the surface was equal to zero on the surface and increased with depth. Both states were simulated for various ratios of stress in a direction perpendicular to the stresses in plane. The obtained results show that residual stress in a perpendicular direction affects the evaluation of residual stresses in plane. If the residual stress in the perpendicular direction is high compared to stresses in plane, the error produced by the evaluation of triaxial stress state by the method for biaxial stress state can also be high. 1 Introduction

Publisher

EDP Sciences

Subject

General Medicine

Reference7 articles.

1. Campus F., Effects of residual stresses on the behaviour of structures (1954)

2. Schajer G. S., Practical Residual Stress Measurement Methods (John Wiley, 2013)

3. Halabuk D. and Navrat T., EAN 2017-55th Conference on Experimental Stress Analysis 2017, 8-14 (2017)

4. Eccentricity Effect in the Hole-Drilling Residual Stress Measurement

5. Residual stress distributions and their influence on fatigue lifetimes

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Overview of Techniques for Measuring Residual Stress in Metal Matrix Composites;Journal of Materials Science and Chemical Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3