Improving Wavelet Threshold De-noising Applied on Parts Detection

Author:

Cheng Lizhou,Mao Jian,Wei Hongyuan

Abstract

The traditional filtering methods such as median filter and mean filter always blurrs image features, resulting in poor noise reduction effect. Wavelet transform has unique adaptability due to its variable resolution, which can better implement wavelet denoising on the basis of image feature. Aiming at the shortcoming of traditional wavelet transform threshold denoising, based on the hard threshold and soft threshold function, this paper proposes improved adaptive thresholding function. By comparing and validating, this method obtains the smaller mean square error (MSE) and higher peak signal to noise ratio. Meanwhile, this method improves the quality of detection images, and reduces the impact on images brought by noise from external enviroment and internal system. So, this can be applied to image noise reduction of the detection system.

Publisher

EDP Sciences

Subject

General Medicine

Reference18 articles.

1. Wu Qiong, Application of Wavelet on Image Edge Detection and Denoising [D], Tianjin University(2008).

2. Donoho D L, Johnstone I M, Ideal spatial adaptation via wavelet shrinkage[J][C]// Biometrika(1994).

3. Wang Yi, The Application of Wavelet Transform in Image Processing [D], Xidian University(2015).

4. He Cunfu, Liu Shuo, et al., Application of Wavelet Denoise in Defect Inspection of Steel Strands[J]. Chinese Journal of Mechanical Engineering, (07):118-122( 2008).

5. Li Xuchao, Zhu Shan-an. Survey of Wavelet Domain Image Denoising[J].Journal of Image and Graphics, (09):1201-1209(2006).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3