Heat transfer problem analysis in three dimension tromol brake system problem

Author:

Tulus Tulus,Sudirman Sudirman,Sinulingga U.,Marpaung T.J.

Abstract

One of the physical problems that can be found in heat transfer is heat transfer to a vehicle brake. In this study a focused vehicle is a motorcycle. Where the heat transfer of the brake system on the motorcycle in this study was completed finite element method. The purpose of this study is to analyse one of the problems of displacement in the three dimensions of the motorcycle brake. So, the results obtained in the form of the best time in the braking for motorcycles. The settlement method is to use one of the partial differential equations for heat transfer. One of them is the Elemenisation model is the braking system. As is known braking system is a system used to slow and stop the vehicle. During the braking phase, the vehicle's kinetic energy will be converted into heat energy due to the friction action of the brake system. The heat flux produced by effects to the brake lining is ideally dissipated into the environment to avoid brake friction pad emissions. The heat produced has a tendency to evaporate the brake fluid and the disc brake surfaces will become hot. Based on the results obtained, when the braking system is in operation, the most significant heat transfer in t = 3.8s. This time is the best time to avoid excessive brake fluid evaporation and the rapid breakdown of the brake surface due to excessive heat.

Publisher

EDP Sciences

Subject

General Medicine

Reference5 articles.

1. Tulus Ariffin, A.K, Abdullah S., Muhamad N. Finite Element Analysis for Heat Transfer in the Insulator on Piston Pin of A Linear Generator Engine. Proceedings of the 2nd IMT-GT Regional Conference Of Mathematics, Statistics And Applications University Sains Malaysia.

2. Simulation and sensitivity analysis of wear on the automotive brake pad

3. Heat Transfer Analysis In Magnet Housing of Linear Generator Using Finite Element Method

4. Sedimentation Optimization on River Dam Flow by Using COMSOL Multiphysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3