Author:
Negrozov Oleg,Akimov Pavel,Mozgaleva Marina
Abstract
The distinctive paper is devoted to solution of multipoint boundary problem of plate analysis (Kirchhoff model) based on combined application of finite element method (FEM) and discrete-continual finite element method (DCFEM). As is known the Kirchhoff-Love theory of plates is a two-dimensional mathematical model that is normally used to determine the stresses and deformations in thin plates subjected to forces and moments. The given domain, occupied by considering structure, is embordered by extended one. The field of application of DCFEM comprises fragments of structure (subdomains) with regular (constant or piecewise constant) physical and geometrical parameters in some dimension (“basic” dimension). DCFEM presupposes finite element mesh approximation for non-basic dimension of extended domain while in the basic dimension problem remains continual. FEM is used for approximation of all other subdomains (it is convenient to solve plate bending problems in terms of displacements). Coupled multilevel approximation model for extended domain and resultant multipoint boundary problem are constructed. Brief information about software systems and verification samples are presented as well.