Fabrication of Miniature Components from ZrO2 Powder by Combining Electrical-field Activated Sintering Technique and Micro-forming

Author:

Hijji Hasan,Qin Yi,Haung Kunlan,Bin Zulkipli Muhammad,Zhao Jie

Abstract

There is an increased demand for miniature/micro products (such as MEMS) and nanotechnology-based products (such as nano-materials). Micro-manufacturing is a link between Macro-and Nano Manufacturing and an effective means for transferring nanotechnology-product designs into volume production. The micro forming has the potential for low-cost, high volume manufacturing applications. In order to meet the high demands on miniaturised products, a rapid production technique and the system, high flexibility, cost-effectiveness and processing a wide range of materials are needed. Recently, a series of studies have been undertaken to investigate forming miniature/micro-components by using a combination of micro-forming and Electrical-field activated sintering (Micro-FAST). The process uses low voltage and high current density, pressure-assisted densification and synthesis technique, which renders several significant merits. The work to be reported in this paper will be focused on the forming of miniature components from Zirconia (ZrO2) powder, without using binders. Several processing parameters have been investigated, such as pressure, heating rate, heating temperature and holding time, which helped to obtain high-quality parts. Using graphite dies and punches, sample parts (solid cylinders of Ø4.00mm × 4.00 mm) were formed. These were subjected to detailed examinations and analysis, such as analysis of the relative density, hardness at the necks formed among the particles and in the particle bodies, as well as the microstructures. The results showed that directly forming the parts from loose powder is feasible, and by properly designing and control the processing parameters, high-quality parts could be achieved, among which heating temperature and holding time are extremely important. At the same time, due to low conductivity of the powder material, carefully designing the tooling is essentials for ensuring properly heating, pressurisation and cooling.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3