Comparison of principal component analysis algorithm and local binary pattern for feature extraction on face recognition system

Author:

Taufik Ichsan,Musthopa Maya,Atmadja Aldy Rialdy,Ramdhani Muhammad Ali,Gerhana Yana Aditia,Ismail Nanang

Abstract

Characteristic extraction in face recognition is a step to get characteristic information from the image. The characteristic extraction algorithm is tested against several scenarios of different sunlight and lights, objects facing the camera and not facing the camera. The sample test data were performed on 4 people using a video file or frame numbering 70 for recognizable faces using Principal Component Analysis (PCA) and Local Binary Pattern (LBP) algorithms. The result of the research shows that Local Binary Pattern (LBP) algorithm in object scenario facing camera with sunlighting in room has accuracy of 98.59%, recognition time of 812,817 milliseconds, FAR of 1,41% and FRR of 0%, while at Principal Component Analysis (PCA) 98.59% accuracy, recognition time of 1275,761 milliseconds, FAR of 1.41% and FRR of 0%. Based on these results, the Local Binary Pattern (LBP) algorithm is more efficient than Principal Component Analysis (PCA) for face recognition of the scenarios to be implemented in real-time video.

Publisher

EDP Sciences

Subject

General Medicine

Reference30 articles.

1. Savvides M., Heo J., and Park S. W., “Introduction to Face Recognition,” in Handbook of Biometrics, A. K. Jain, P. Flynn, and A. A. Ross, Eds. pp. 44-45. (USA: Springer, 2008)

2. Alexander L. W., Sentinuwo S. R., Sambul A. M., Informatika T., Sam U., and Manado R., “Implementasi Algoritma Pengenalan Wajah Untuk Mendeteksi Visual Hacking,” E-Journal Tek. Inform., vol. 11, no. 1, (2017)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Smart and Sustainable Surveillance System;E3S Web of Conferences;2023

2. Face Recognition with Audio Output: An Aid for the Visually Impaired;2022 4th International Conference on Inventive Research in Computing Applications (ICIRCA);2022-09-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3