Reconstruction of transient pressure and acceleration over a tire surface using the inverse time domain boundary element method

Author:

Zhang Yang,Bi Chuanxing,Zhang Xiaozheng,Zhang Yongbin,Xu Liang

Abstract

The inverse time domain boundary element method (ITBEM) that is derived from the direct time domain boundary element method by eliminating the retarded time is able to reconstruct the transient pressure and flux on the surface of an arbitrarily shaped source by measuring the pressure on a hologram surface. In the present work, the ITBEM is applied to reconstruct the transient pressure and acceleration over the surface of a tire which is supported away from the ground in a semi-anechoic chamber. The tire is impacted by a rigid sphere to generate a transient sound field, and the measurement is controlled by a trigger which is connected to an acceleration sensor stuck on the surface of the tire. The pressure and acceleration on the surface of the tire are reconstructed from the holographic pressure measured by array microphones. By visualizing the pressure and acceleration with respect to the elapsed time, the wave propagation phenomenon of the pressure and acceleration on the surface of the tire is shown clearly. The comparison of the reconstructed surface acceleration to the measured one demonstrates the effectiveness of ITBEM for transient sound field reconstruction.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3