Author:
Benakrach H.,Taha-Janan M.,Es-Sadek M.Z.
Abstract
The purpose of the present work is to use a finite volume method for solving Euler equations in the presence of shocks and discontinuities, with a generalized equation of state. This last choice allows to treat both compressible and incompressible fluids. The first results of the work are presented. They consist in simulating two-dimensional single-specie flows in the presence of shocks.
The results obtained are compared with the analytical results considered as benchmarks in the domain.
Reference9 articles.
1. Taha-Janan M., Contribution à la simulation numérique d’écoulements multi-espèces pour des fluides compressibles ou faiblement compressibles, Thèse de doctorat Es-Sciences appliquées, Université Mohamed V, Ecole Mohammadia d’Ingénieurs, 2001.
2. A flow solver for the Euler and Navier‐Stokes equations for multi‐phase flows with a stiffened gas equation of state
3. An Efficient Shock-Capturing Algorithm for Compressible Multicomponent Problems
4. Roe P. L., Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics, Upwind and High-Resolution Schemes. Springer, Berlin (1986) 451–469.
5. Approximate Riemann solvers, parameter vectors, and difference schemes
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献