Insights from corrosion current measurements on corrosion mechanisms in reinforced concrete and on the evaluation of other corrosion data

Author:

Schneck Ulrich

Abstract

During the past years Tafel polarization measurements have been implemented into the scope of measurements of CITec corrosion diagnosis projects. This has created a vast database of different and corresponding corrosion parameters, such as chloride and water content in the rebar vicinity, open circuit potential, electrolyte resistance, polarization resistance (from galvanostatic pulse and linear polarization) and corrosion current from Tafel polarization measurements. Although general limitations in using these methods on macro cell systems such as reinforced concrete are known, the comparative assessment of these data has led to a better understanding of the corrosion behaviour and of specific circumstances of the structures which deviated partly from usual expectations. For instance, a low polarization resistance at high chloride content will not result necessarily in a high corrosion current, if the reinforcement in the wider vicinity of the test location is similar active, and cathodic rebar areas are either very distant or retarded by very wet concrete. So the extended range of corrosion testing gives a more precise evaluation of the corrosion situation and permits a tailored repair and maintenance concept to be found. It has also been found that the Stern-Geary equation which is often used to calculate corrosion current densities and material loss of the reinforcement from linear polarization (LPR) measurements, doesn’t seem very feasible if used on reinforced concrete structures, as there appears to be a dominant influence of macro cell corrosion over the corrosion model of a homogenous mixed electrode (for which the Stern-Geary equation applies), and the true corrosion current densities may be either larger or (very often) much smaller than those calculated from Stern-Geary. This is not a new observation, and the findings will be discussed for several project cases.

Publisher

EDP Sciences

Subject

General Medicine

Reference6 articles.

1. Ahlborn K., Berthold F., Vonau W., Grünzig H., Schneck U., Jahn H., Köhler J., Modular Corrosion Measurement System (CMS) for electrochemical NDT. 4th International Conference on Concrete Solutions, Proc. (2011)

2. Bard A. J., Faulkner L.R., Electrochemical Methods. Fundamentals and Applications 2nd Edition. Wiley, New York (2001)

3. Wendler-Kalsch E., Gräfen H., Korrosionsschaden-kunde, Klassiker der Technik (1998)

4. Elsener B., Flückiger D., Wojtas H., Böhni H., Methoden zur Erfassung der Korrosion von Stahl in Beton – FA 85/88. ETH Zürich (1996)

5. Broomfield J., Corrosion of steel in concrete – understanding, investigation and repair 2nd Edition. Taylor & Francis (2007)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3