Abstract
A detailed study of the full energy peak efficiency of a high purity germanium (HPGe) detector including the effect of source self-absorption and coincidence summing was performed using Monte Carlo simulation, as it is difficult and time-consuming to measure the full energy peak efficiency experimentally. Cylindrical water composition source was simulated with different characteristics, covering the energy range from 60 to 1836 keV. Self-absorption correction factors (SAFcal) were calculated for two source volumes and obtained good agreement with the experimental results except for (60Co and 88Y) nuclides. The simulation was performed for various samples with different densities and observed their effects on the full energy peak efficiency value of the detector. In the case of extended volumetric source, the coincidence summing correction factors (CSFcal) for two nuclides (60Co and 88Y) were estimated with the GEANT4 simulation toolkit. The effect of correction factors on different cylindrical source volumes was also investigated. With the self-absorption and coincidence summing effect, the best agreement was achieved between simulated and experimental results with discrepancy less than 2% for all of the radionuclides included in two source volumes.
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Waste Management and Disposal,Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献