Improvements in individual dose measurement techniques following nuclear emergencies

Author:

López M.A.,Berkovskyy V.,Ratia G.,Challeton-de-Vathaire C.,Davesne E.,Eakins J.,Franck D.,Giussani A.,Gregoratto D.,Hernandez C.,Kulka U.,Mafodda A.,Marsh J.W.,Navarro J.F.,Oestreicher U.,Pérez B.,Sierra I.,Woda C.

Abstract

The aim of CONFIDENCE WP2 is to improve the situation awareness in the early phase of a nuclear accident by trying to reduce the uncertainty in individual dose assessment when dealing with external and internal exposures. Main WP2 research actions to improve external dosimetry in this emergency frame were the development of destruction-free protocols using electronic components in smartphones for external dose measurements, Monte Carlo (MCNP) calculations for organ dose assessment with associated uncertainties and the organization of a workshop for integration of biodosimetry into emergency response. On the other hand, one of the main concerns after the release of radioactive material in case of a nuclear reactor accident is the intake of radioiodines in workers and population. A smartphone/tablet application for direct calculation of thyroid doses from monitoring data of the content of 131I (and 132I) in the thyroid was developed during the project (Prototype of processing unit for thyroid dose monitor [IDOSE]). Up to date age-dependent ICRP dose per content values are used by this tool, allowing a rapid screening of exposed persons. A sensitivity analysis on thyroid doses was carried out, considering 16 exposure scenarios leading to 16 different dose estimates, using ICRP56/119 (ICRP60) vs. ICRP130/137 iodine models for adults, varying the time of intake, the time pattern (acute vs. chronic) and considering not well defined relative abundance of short-lived radioiodines and 132Te. Real cases of Europeans contaminated in Japan shortly after the Fukushima NPP accident (low doses), and artificial cases of high doses generated to see the impact of the different parameters in this study, were used for applying this multi-intake scenario approach. Main conclusions of the study are presented here.

Publisher

EDP Sciences

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Waste Management and Disposal,Safety, Risk, Reliability and Quality,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Reference14 articles.

1. Castellani CM, Marsh JW, Hurtgen C, Blanchardon E, Berard P, Giussani A, Lopez MA. 2013. IDEAS guidelines V2 for the estimation of committed doses from incorporation monitoring data. EURADOS Report 2013-01.

2. The IRSN’s earliest assessments of the Fukushima accident's consequences for the terrestrial environment in Japan

3. Cauwels V, Beerten K, Vanhavere F, Lievens L. 2010. Accident dosimetry using chip cards. In: Third European IRPA Congress, Helsinki, Finland, pp. 866–874.

4. ICRP Publication 103. 2007. The 2007 recommendations of the International Commission on Radiological Protection. Ann. ICRP 37.

5. ICRP Publication 119. 2012. Compendium of dose coefficients based on ICRP publication 60.  Ann. ICRP 41 (Suppl.).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3