Optimization models for a lot sizing and scheduling problem on parallel production lines that share scarce resources

Author:

Alves de Oliveira Soler Willy,Oliveira Santos Maristela,do Socorro Nogueira Rangel Maria

Abstract

The purpose of this paper is to propose mathematical models to represent a lot sizing and scheduling problem on multiple production lines that share scarce resources and to investigate the computational performance of the proposed models. The main feature that differentiates this problem from others in the literature is that the decision on which lines to organize should be taken considering the availability of the necessary resources. The optimization criterion is the minimization of the costs incurred in the production process (inventory, backlogging, organization of production lines, and sequence-dependent setup costs). Nine mixed integer optimization models to represent the problem are given and, also, the results of an extensive computational study carried out using a set of instances from the literature. The computational study indicates that an efficient formulation, able to provide high quality solutions for large sized instances, can be obtained from a classical model by making the binary production variables explicit, using the facility location reformulation as well as the single commodity flow constraints to eliminate subsequences. Moreover, from the results, it is also clear that the consideration of scarce resources makes the problem significantly more difficult than the traditional one.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Universidade Federal de Mato Grosso do Sul

Publisher

EDP Sciences

Subject

Management Science and Operations Research,Computer Science Applications,Theoretical Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3