Author:
Zhou Sizhong,Sun Zhiren,Liu Hongxia
Abstract
A P≥k-factor of a graph G is a spanning subgraph of G whose components are paths of order at least k. We say that a graph G is P≥k-factor covered if for every edge e ∈ E(G), G admits a P≥k-factor that contains e; and we say that a graph G is P≥k-factor uniform if for every edge e ∈ E(G), the graph G−e is P≥k-factor covered. In other words, G is P≥k-factor uniform if for every pair of edges e1, e2 ∈ E(G), G admits a P≥k-factor that contains e1 and avoids e2. In this article, we testify that (1) a 3-edge-connected graph G is P≥k-factor uniform if its isolated toughness I(G) > 1; (2) a 3-edge-connected graph G is P≥k-factor uniform if its isolated toughness I(G) > 2. Furthermore, we explain that these conditions on isolated toughness and edge-connectivity in our main results are best possible in some sense.
Funder
This work is supported by Six Talent Peaks Project in Jiangsu Province, China
Subject
Management Science and Operations Research,Computer Science Applications,Theoretical Computer Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献