INVESTIGATION OF THE TiO2 NANOPARTICLES EFFECT ON SEED GERMINATION CHARACTERISTICS OF ZIZIPHORA CLINOPODIOIDES LAM.

Author:

Azimi Reyhaneh,Kianian Mohammad Kia,Pessarakli Mohammad

Abstract

Improvement in the rate and amount of germination of seeds has a very important effect on the establish-ment of primary seedlings and the increase of rangeland production. The rapid and uniform germination of seeds leads to the successful establishment of plants. The use of nanoscale materials can help germinate faster seeds. Therefore, in this study, the effects of TiO2 nanoparticles in concentrations of 0, 10, 20, 30, 40, 60 and 80 mg / l on the rate and speed of seed germination of Ziziphora clinopodioides Lam. paid. This design was carried out in a completely randomized design with four replications for 20 days at a constant temperature of 20°C under 12 hours of light and 12 hours of darkness at the Germinator of Natural Resources Faculty of the Ferdowsi University of Mashhad. The results showed that germination percentage of treated seeds with TiO2 nanoparticles increased to 23% ppm compared to control treatment. Also, in other concentrations of other nanoparticles, there was a positive effect on speed and germination percentage, so that the effect of different concentrations of nanoparticles on germination characteristics of Ziziphora clinopodioides Lam. seeds was significant. The highest germination percentage was observed in the concentration of 30 ppm and the lowest germination rate at 30 and 20 ppm concentrations. In high concentrations of TiO2 nanoparticles, no positive effects were observed on the germination characteristics of seed Ziziphora clinopodioides Lam. To conclude the use of TiO2 nanoparticles can be improved by improving the seed germination properties of the medicinal plant Ziziphora clinopodioides Lam. that cause increases plant’s establishment in natural areas.

Publisher

Plant Breeding and Acclimatization Institute - National Research Institute

Subject

Geology,Ocean Engineering,Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The emerging role of nanotechnology in agri-food sector: recent trends and opportunities;Nanotechnology and Nanomaterials in the Agri-Food Industries;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3