Modern approaches to the description of the dynamics of cavitation bubbles and cavitation clouds

Author:

Маргулис И.М.,Половинкин В.Н.,Яшин А.И.

Abstract

В статье рассмотрены существующие подходы к описанию динамики кавитационных пузырьков и кавитационного облака и проблемы, которое возникают при моделировании высокоэнергетических кавитационных процессов, таких как ударные волны, кавитационная эрозия, свечение из пузырьков (сонолюминесценция), и т.д., в акустическом поле высокой интенсивности. Показано, что известная модель, основанная на уравнениях Келлера – Миксиса и Бъеркнеса, не соответствует целому ряду экспериментальных данных, полученных при исследовании «одиночного» кавитационного пузырька, неподвижно пульсирующего в пучности стоячей волны и «обычного» пузырька, движущегося в кавитационном облаке. Для устранения этих несоответствий предложена новая система уравнений, дополнительно учитывающая неравновесность процессов испарения и конденсации пара и неидеальность парогазовой смеси в пузырьке, а также поступательное движение пузырька. Показано, что при быстром сжатии пузырька пар внутри него не успевает конденсироваться и сильно демпфирует это сжатие. Полученное уравнение объясняет сильную зависимость интенсивности свечения «одиночных» пузырьков от температуры жидкости. Устранены противоречия при описании поступательного движения пузырьков, связанные с применением уравнения Бъеркнеса. Показано, что поступательно движущийся пузырек сжимается значительно слабее неподвижного, поскольку в фазе сжатия энергия радиального движения пузырька перетекает в энергию поступательного движения. Это позволяет объяснить причину различия в механизмах свечения пузырьков разных типов. «Одиночный» пузырек излучает свет в момент наибольшего сжатия вследствие нагрева парогазовой смеси до 5 000–10 000 К. Пузырьки в кавитационном облаке движутся поступательно, а их свечение, в отсутствие сильного сжатия, обусловлено микроразрядами в парогазовой фазе при деформации поверхностей пузырьков. The article discusses the existing approaches to the description of the dynamics of cavitation bubbles and cavitation clouds and the problems that arise during modeling of high-energy cavitation processes, such as shock waves, cavitation erosion, bubble glow (sonoluminescence), etc., in a high-intensity acoustic field. A well–known model based on the Keller-Miksis and Bjerknes equations does not correspond to several experimental data obtained in the study of a "single" cavitation bubble pulsating motionlessly in the antinode of a standing wave and an "ordinary" bubble moving in a cavitation cloud. To eliminate these inconsistencies, a new system of equations is proposed, which additionally considers the nonequilibrium processes of vapor evaporation and condensation and the imperfection of the vapor-gas mixture in the bubble, as well as the translational motion of the bubble. It is shown that with rapid compression of the bubble, the vapor inside it does not have time to condense and strongly damps this compression. Resulting equation demonstrates the strong dependence of the intensity of "single" bubble glow on the temperature of the liquid. Contradictions in the description of the translational motion of bubbles associated with the application of the Bjerknes equation are eliminated. Translationally moving bubble is compressed much weaker than a stationary one, since in the compression phase the energy of the radial motion of the bubble flows into the energy of translational motion. It helps explain the reason for the difference in the mechanisms of light emission from bubbles of different types. A "single" bubble emits light at maximal compression due to heating of the vapor-gas mixture up to 5000–10000 K. Bubbles in a cavitation cloud move progressively, and their glow, in the absence of strong compression, is caused by micro-discharges in the vapor-gas phase during deformation of the bubble surfaces.

Publisher

Marine Intellectual Technologies

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3