Physicochemical stability of the bevacizumab biosimilar, ABP 215, after preparation and storage in intravenous bags

Author:

Seckute Jolita,Castellanos Ingrid,Bane Steven

Abstract

Study Objectives: To evaluate extended in-use stability of bevacizumab biosimilar, ABP 215, after dilution into intravenous bags, extended storage, and simulated infusion to enable advanced preparation and storage. Methods: Two lots of ABP 215 were diluted to high- (16.5 mg/mL) and low- (1.4 mg/mL) dose concentrations in two types of intravenous bag under ambient light conditions. Dosed intravenous bags were stored at 2°C–8°C for 35 days, followed by 30°C for 2 days, and each bag was infused on Day 37. Analysis of purity and physicochemical stability was performed using size-exclusion high-performance liquid chromatography (SE-HPLC), cation-exchange high-performance liquid chromatography (CEX-HPLC), reduced capillary electrophoresis-sodium dodecyl sulphate (rCE-SDS), subvisible particle detection assays, visual inspection, and by measuring protein concentration and potency. Results: No meaningful changes were seen in ABP 215 purity when analysed by SE-HPLC, CEX-HPLC and rCE-SDS following dilution, storage and infusion of two lots, bags, and doses. Protein concentration remained consistent throughout the study for all samples and no significant loss in potency was detected. No potentially proteinaceous particles or increases in subvisible particles were observed. Discussion: This study investigated the in-use stability of ABP 215 following dilution, extended storage, and infusion, that represent worst-case handling conditions. ABP 215 exhibited consistent product quality and activity, with no significant degradation observed under the conditions tested. Conclusion: ABP 215 retains physicochemical stability after dilution over the recommended dosing concentrations, extended storage, and simulated infusion. This supports the advance preparation and storage of ABP 215 in intravenous bags for infusion.

Publisher

Pro Pharma Communications International

Subject

Drug Guides,Pharmacy

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3