Caffeine Removal by Adsorption: Kinetics, Equilibrium Thermodynamic and Regeneration Studies

Author:

Dávila Ivone Vanessa Jurado,Hübner Júlia Viola Matzenbacher,Nunes Keila Guerra Pacheco,Féris Liliana Amaral

Abstract

In this work, it was studied the caffeine removal through the adsorption on granular activated carbon (CAG). The influence of pH, contact time and CAG dosage were analyzed by batch experiments. Adsorption Kinetic was studied using the models of pseudo-first-order and pseudo-second-order. The adsorption equilibrium data was studied with Langmuir, Freundlich, and Redlich-Peterson isotherm models. The process thermodynamic also was studied. It was obtained 88 % of removal under the experimental conditions of natural pH, 60 min of adsorption and 8 g.L-1 of CAG. The kinetic model that showed the best results was the pseudo-secondorder and Langmuir was the isotherm model that best described the adsorption behavior. The thermodynamic parameters obtained showed a spontaneous, endothermic and reversible process. The desorption efficiency also was studied by regenerant solvents. The best results were obtained using a solvent combination of ethyl acetate, ethanol, and water (50:25:25), and it was obtained a caffeine removal of 57 %, achieving 70 % when a new solution is used in each regeneration step.

Publisher

Journal of Solid Waste Technology and Management

Subject

Waste Management and Disposal

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3