Author:
Amadi O.C.,Mbaeke C.C.,Nwagu T.N.,Nnamchi C.I.,Ndubuisi I.A.,Okpala G.,Moneke A.N.,Agu R.C.,Okolo B.N.
Abstract
Renewable plant wastes constitute environmental nuisance. Their conversion by enzymes into bioethanol can be beneficial. We investigated the use of renewable plant waste as substrate for enzyme production and hydrolysis of the plant waste for ethanol production using an indigenous yeast
strain. Five yeast strains; MCC-1, MCC-2, MCC-3, MCC-4 and MCC-5 were evaluated for production of sugars, α-amylase, glucoamylase and bioethanol using soluble starch. Phylogenetic analysis using partial sequence of the ITS gene classified MCC-4 as Pichia exigua. Proximate composition
of plant wastes – cassava, wild yam, mango seed, udara seed and breadfruit were determined. Results showed total carbohydrate of (83.9%) for cassava flour. The ability of yeast to utilize these substrates and the effect of culture conditions (inoculum, pH, nitrogen source and substrate
concentration) were also determined. Cassava pulp flour was the best substrate producing reducing sugar (1.471 ± 0.056mg/mL), α-amylase (0.573 ± 0.019U/mL), glucoamylase (1.605 ± 0.119U/mL), and ethanol (4.440 ± 0.014g/L). Culture conditions revealed optimum
for inoculum concentration as (1mL), pH (4), nitrogen source (soya bean, 3g/L) and substrate concentration of (8%). Pichia exigua (MCC-4) a natural yeast strain isolated from the soil has the potential for both enzyme and ethanol production in a single step process.
Publisher
Journal of Solid Waste Technology and Management
Subject
Waste Management and Disposal
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献