Renewable Plant Waste As Substrates for Enzyme Production, Saccharification and Direct Bioethanol Production by Indigenous Yeast Strain Pichia Exigua

Author:

Amadi O.C.,Mbaeke C.C.,Nwagu T.N.,Nnamchi C.I.,Ndubuisi I.A.,Okpala G.,Moneke A.N.,Agu R.C.,Okolo B.N.

Abstract

Renewable plant wastes constitute environmental nuisance. Their conversion by enzymes into bioethanol can be beneficial. We investigated the use of renewable plant waste as substrate for enzyme production and hydrolysis of the plant waste for ethanol production using an indigenous yeast strain. Five yeast strains; MCC-1, MCC-2, MCC-3, MCC-4 and MCC-5 were evaluated for production of sugars, α-amylase, glucoamylase and bioethanol using soluble starch. Phylogenetic analysis using partial sequence of the ITS gene classified MCC-4 as Pichia exigua. Proximate composition of plant wastes – cassava, wild yam, mango seed, udara seed and breadfruit were determined. Results showed total carbohydrate of (83.9%) for cassava flour. The ability of yeast to utilize these substrates and the effect of culture conditions (inoculum, pH, nitrogen source and substrate concentration) were also determined. Cassava pulp flour was the best substrate producing reducing sugar (1.471 ± 0.056mg/mL), α-amylase (0.573 ± 0.019U/mL), glucoamylase (1.605 ± 0.119U/mL), and ethanol (4.440 ± 0.014g/L). Culture conditions revealed optimum for inoculum concentration as (1mL), pH (4), nitrogen source (soya bean, 3g/L) and substrate concentration of (8%). Pichia exigua (MCC-4) a natural yeast strain isolated from the soil has the potential for both enzyme and ethanol production in a single step process.

Publisher

Journal of Solid Waste Technology and Management

Subject

Waste Management and Disposal

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3