Повышение эффективности выявления антиконкурентных соглашений в государственных закупках: анализ цифровых инструментов и международных лучших практик / Enhancing Efficiency in Detecting Anti-Competitive Agreements in State Procurement: An Analysis of Digital Tools and International Best Practices

Author:

Hovhannisyan Tatevik A.1ORCID

Affiliation:

1. Russian-Armenian University, Yerevan, RA

Abstract

Detection of violations of competition law in public procurement processes under existing electronic systems requires significant resources. This article examines the effectiveness of various international digital tools and platforms in simplifying data analysis of procurement processes and uncovering anti-competitive agreements. Within the framework of the article, a study of international experience was carried out, and innovative solutions in the field were highlighted. The study suggests integrating advanced digital tools into a new e-procurement system. The main recommendations are related to the introduction of an automated tool for detecting and proving possible anti-competitive agreements in the e-procurement system, which will enable the revelation of interconnections between economic entities by identifying the characteristics of agreements restricting competition, as well as calculating and managing possible risks. The proposed changes aim to improve the identification of connections between business entities, highlight suspicious activities by the latter, and provide a flexible and interoperable system for comprehensive data analysis. These changes are expected to promote competition and transparency in public procurement.

Publisher

Public Institute of Political & Social Research of Blacksea-Caspian Region

Reference6 articles.

1. Ахматов Х. А., Егоров М. О., Давиденко А. В. Цифровое противодействие электронному картелированию в сфере государственных закупок // Известия ВУЗов ЭФиУП. 2019. №4 (42). URL: https://u.to/0v2-IA (Ссылка укорочена. Дата обращения: 11.06.2024), 92-97

2. European Commission. (2021). EU Digital Markets Act. [PDF] URL: https://u.to/rf6-IA (Ссылка укорочена. Дата обращения: 11.06.2024), 4-5

3. García Rodríguez, M. J., Montequín, V., Ballesteros-Pérez, P., & Signor, R. (2022). Collusion detection in public procurement auctions with machine learning algorithms. URL: http://surl.li/ujibat (Ссылка укорочена. Дата обращения: 15.06.2024)

4. Hofman, P. S., & Tulder, R. (2021). Legal Implications of Using AI in Public Procurement: A Dutch Perspective. Utrecht University School of Law Research Paper, (21-11). [PDF] URL: https://www.uu.nl/sites/default/files/LEG_USE_WP_21-11.pdf

5. OECD. (2022). Data Screening Tools in Competition Investigations 2022. [PDF] URL: https://u.to/Yv6-IA (Ссылка укорочена. Дата обращения: 14.06.2024), 15-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3