Theoretical and Simulation Prediction of Optimum Cover Inclination To Prevent Fall-Off Condensed Water Droplets

Author:

Alshqirate Abed Alrzaq1ORCID

Affiliation:

1. Al-Balqa Applied University, Faculty of Engineering Technology, Amman, 11131, Jordan

Abstract

This study presented theoretical and simulation predictions to find the optimum glass cover inclination angle that can allow the water droplet underneath the surface to slide along it without fall-off. As a case study, the solar still main component that plays a big role on it is performance is the transparent glass cover that permits solar rays to pass through it and is used as a condensation surface for water vapor. The inclination angle of the cover is a very important parameter that provides confined space to increase the condensation process by fast cooling of the surface and result in more freshwater productivity. The theoretical prediction is obtained by modeling a set of mathematical equations that contain the main parameters necessary to slide the droplet along the surface without detaching it and solving them by using the MATLAB computer program. The simulation technique for the volume of fluid method uses the volume fraction equation with the level set applied in ANSYS Fluent software. The 3D model was created, and a water droplet was applied with adhesion force on the glass. It was found that the size of the droplet represented by its critical radius is a function of inclination angle. Also, it is found that for the angles larger than 15o , water droplets slide over the surface without separation. The optimum cover inclination provides both smooth slidings of droplets along with it and a suitable confined area that increases the rate of evaporation and condensation.

Publisher

Al-Balqa Applied University

Subject

Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3