Effects of Tool-Workpiece Friction Condition on Energy Consumption during Piercing Phase of Seamless Tube Production

Author:

Aghajani Derazkola Hamed1,Garcia Eduardo1,Murillo-Marrodán Alberto1

Affiliation:

1. University of Deusto

Abstract

During the hot piercing phase of seamless tube production, friction and contact conditions between tools and workpiece significantly influence final product quality and energy consumption. The friction effects on the production of high alloyed steels like Super Cr13 steel are critical. This study analyses the effect of different friction conditions at the workpiece-tool interface in the piercing of Super Cr13 steel bars to minimize total energy consumption in such a manufacturing process. For this purpose, a three-dimensional finite element method (FEM) is employed to simulate and analyze the piercing process. The variety of tools (plunge, rollers, and Diescher disks) and contact conditions lead to differences in the applied stress at different workpiece areas. Consequently, various friction models and friction coefficients were selected for different interfaces. The relation between strain rate, temperature, and geometry of pierced tube are discussed, and the selected friction relation with total power and energy consumption is presented. Experimental tests have been used for FEM validation and result analysis, and finally, the most effective conditions with lower total energy consumption are presented.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3