Effect of Split and Timing Injection Techniques on Diesel-Biodiesel Blends Fueled RCCI Engines

Author:

Al-Abboodi Nhad K. Frhan1,Al-Badri Alaa R.1,Abdulsaeed Ali A.1

Affiliation:

1. Wasit University

Abstract

On reactivity-controlled compression ignition engines, numerical simulations approach were conducted to study the combined effect of the 2nd pulse fraction and dwell time on combustion and emissions characteristics powered by the diesel-biodiesel blends. The Diesel-RK commercial software carried out the simulation the engine was chosen. Meanwhile, the fuel is directly injected through engine cylinder, four stroke, and single cylinder. Simulations were conducted with different dwell times between start of injections of the 1st and 2nd pulses, while the start of injections times of 1st pulse keeping at -40o CA ATDC. Besides, the fuel fraction ratio of the 2nd pulse was changed at 90, 80,70, and 70%, accordingly. In this current study, the peak cylinder pressure and peak cylinder temperature were compared at various boundary conditions. The extracted results extracted from simulation showed that, in contrast to the dwell time 5o CA, a slightly reduction in peak cylinder pressure by 8.9, 7.8, 6.7, and 9.1% for 10, 15. 20, 25o CA respectively. Peak cylinder temperature showed identical trend, its decreased by 9.0, 6.8, 7.8, and 8.8% . Moreover, the results showed that by decreased fuel fraction ratio from 90 to 60%, the peak cylinder pressure increased by 10.1%, while peak cylinder temperature decreased by 7.9%. As a result of the current study, and based on the results of the experimental work published in the literature, it has been consistently demonstrated that the predictive numerical model is reliable..

Publisher

Trans Tech Publications Ltd

Reference24 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3