Affiliation:
1. SRM Institute of Science and Technology
2. Sri Sivasubramaniya Nadar College of Engineering
Abstract
Smart grids add software and sensors to the existing power grids that will give utilities and individual’s access to information that they can understand and react to make changes quickly. They employ bi-directional communication between electricity endpoints and power stations. They help power stations with managing electricity demand and perform dynamic pricing. For instance, by using smart meters at home, consumers can view the price of electricity throughout the day and schedule tasks such that their energy bills are minimized. Deploying a smart grid comes with its own challenges. Managing the network of a smart grid is very complex and time consuming. The communication system comprises of devices that use different protocols for communication. This leads to interoperability problems and frequent intervention of the network administrator to make changes to the network configuration. By using the software-defined networking architecture, the control plane is separated from the data-forwarding plane. It allows network administrators to make configuration changes to the network from a device that centrally controls network components. One of the major challenges in SDN is the placement of controller (s) in the network. It affects the primary objective of setting up a network – fast and reliable communication of data. In this paper, we introduce the networking paradigm of smart grids and SDN architecture and go on to propose a method to find the optimal solution for the placement of controller (s) in a smart grid that uses SDN architecture.
Publisher
Trans Tech Publications Ltd