Bio-Inspired Hierarchical Porous TiO<sub>2</sub> for Photodegradation of Organic Pollutant under Solar Irradiation

Author:

Wu Ling Ling1,Zhang Hao Yue1,Guo Cui Ping1,Song Fang1

Affiliation:

1. Shanghai Jiao Tong University

Abstract

Photo-degradation of organic pollutants is of immense importance for environmental protection. The key is low-cost photocatalysts of high efficiency. Templating approach is attractive to gain hierarchical porous photocatalysts with high surface area, while is usually stuck by the limited types of desirable templates, in particular those with sophisticated microstructures. Herein, we showed a bio-inspired templating strategy that was applied to fabricate an efficient TiO2 photocatalyst with a unique hierarchical porous structure. Taking rape-pollen grains as a typical example of bio-templates, a process combining hydrothermal treatment with calcination was developed to grow TiO2 nanoparticles of 6-14 nm on the templates and subsequently to remove the organic biotemplates. As-obtained TiO2 were micro-sized spheres or ellipsoids that were surrounded by open tubular arrays. The surface area was as large as ~175 m2/g. For photodegradation, the rape-pollen-grains-architectured TiO2 has a rate (k) of 0.150 min-1, which is 10.9 times faster than the non-templated TiO2. The superior photocatalytic activity should be ascribed to the unique hierarchical porous structures, which provided interconnected channels for efficient mass transport and a large surface area for fast reaction. Our work demonstrates an effective method, namely bioinspired templating, for the scalable synthesis of efficient photocatalysts. Considering the structural diversity of pollen grains, this work may inspire others on the research of photo-response materials that rely on morphology optimization.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3