Damage Accumulation and Recovery Involving Vacancy-Type Defects Enhanced by Hydrogen in Tempered Martensitic Steel Showing Quasi-Cleavage Fracture

Author:

Saito Kei1,Hirade Tetsuya2,Takai Kenichi1

Affiliation:

1. Sophia University

2. Japan Atomic Energy Agency

Abstract

Hydrogen embrittlement (HE) is increasingly becoming a critical issue for using high-strength steels in the automotive and infrastructure industries. To overcome the risk posed by HE of structural components under a hydrogen uptake environment in long-term service, it is necessary to clarify the mechanism of HE. In the present study, the presence of hydrogen-enhanced strain-induced vacancies (HESIVs)—one type of defect associated with proposed HE mechanisms—was validated by low-strain-rate tensile tests with in-situ electrochemical hydrogen charging for tempered martensitic steel showing quasi-cleavage fracture with a tensile strength. The effect HESIVs on the mechanical properties of tempered martensitic steel was also studied. The combined use of low-temperature thermal desorption spectroscopy and tensile tests led to the following observations: (i) hydrogen enhanced the accumulation of vacancy-type defects under plastic strain, (ii) accumulated vacancy-type defects adversely affected the ductility of the tempered martensitic steel after hydrogen release, and (iii) aging at 150 °C after applying a given plastic strain with hydrogen charging decreased the amount of newly formed vacancy-type defects and resulted in recovery of ductility.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3