Spectroscopic Analysis of Electrolyte Solutions with Diverse Metal Ions for Aqueous Zinc-Ion Batteries

Author:

Lee Sangyup1,Kim Eunji1,Nogales Paul Maldonado1,Jeong Soon Ki1

Affiliation:

1. Soonchunhyang University

Abstract

The water-in-salt method, recognized for regulating metal ion solvation structure, garners attention in secondary batteries for its potential to broaden the electrolyte's operational range and reduce side reactions. However, the understanding of how anion size variations impact metal ion solvation structure remains limited. This study addresses the gap by employing mixed electrolytes with diverse anion sizes, investigating the effects of electrolyte concentration and anion size on the solvation structure of zinc cations crucial in electrochemical reactions. Various analytical techniques, including FT-IR, Raman, and NMR spectroscopy, are utilized. Mixed electrolytes are formulated by dissolving ZnCl2 and Zn (NO3)2 in water (1.0 mol kg‒1), with the addition of LiCl and LiNO3 (0.1 to 19.0 mol kg‒1). FT-IR and Raman analyses reveal weakened hydrogen bonds with increasing electrolyte concentration. Elevated concentration disrupts bonds between Li+ ions and water molecules, resulting in alterations in solvation structure. NMR and FT-IR spectra exhibit distinct behaviors, suggesting influences from molecular bonding structure and anion size, intricately linked to the specific salt used in electrolyte preparation.

Publisher

Trans Tech Publications Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3