Effect of CeO<sub>2</sub> Doped Zirconium Titanate with Various Temperatures by Solid-State Reaction Method

Author:

Naga Sravanthi M.1,Jothi Sudagar1,Selva Kumar A.2

Affiliation:

1. VIT-AP University

2. Vellore Institute of Technology

Abstract

The synthesis of ceramic composites consisting of cerium and titanium-doped zirconium (ZCT) oxide was achieved by the solid-state reaction technique. The ZCT composite ceramic powder undergoes sintering at various temperatures, including room temperature (RT), 1000°C, 1100°C, 1200°C, and 1300°C. Extensive study has been conducted on ceria-based materials in the field of catalysis, owing to their vast array of uses. Nevertheless, there was a limited amount of research conducted on the impact of ceria in the solid-state reaction approach. The current study employed a solid-state reaction method to fabricate ceramic composites comprising ZrO2, CeO2, and TiO2. Various sintering temperatures were employed in the process. This study aimed to evaluate the impact of the sintering effect of ZCT ceramic oxides on several aspects, including crystal structure, surface morphology, optical properties, and electrical properties. The ZCT ceramic oxide underwent sintering at room temperature (RT), 1000°C, and 1100°C, resulting in the formation of a monoclinic crystal structure. However, sintering at 1200°C and 1300°C led to the presence of mixed phases, characterized by both monoclinic and tetragonal crystal structures, as observed through X-ray diffraction (XRD) analysis. When the sintering temperature is increased from 1000 to 1300°C, there is a modest drop in the band gap of a ZCT material from 3.43eV to 3.25eV. frequency(1mHZ-200kHz) dependence of dielectric constant, dielectric loss and ac electrical conductivity of the synthesized composites were carried out. The results indicate that dielectric constant and loss decreases with frequency rises and reaches a constant value at higher frequencies. The electrical conductivity of all ZCT samples exhibits an increase as the frequency is raised, whereas it reaches a minimum at lower frequencies.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3