Analysis of Pine Resin Properties as a Way to Understand and Prevent Exudation from Wood Material

Author:

Sansonetti Errj1,Cirule Dace1,Kuka Edgars1,Meile Kristine1

Affiliation:

1. Latvian State Institute of Wood Chemistry

Abstract

A major function of resin is to provide defense against external attacks by releasing the resin flow on the attacked or damaged area. Nonetheless, the leakage of the resin on the surface can have a negative aesthetic and economic impact on wood material. The aim of this study is to investigate which treatments affect the chemo-physical properties of the resin in order to hinder the exudation on wood surface during service. To achieve a thickening of the resin, it is necessary to remove the volatile turpentine, and several studies have been carried out in this direction, providing useful information about this process. The heat treatment at different temperatures, 60°C, 100°C and 150°C, respectively, gives different mass losses, thus confirming that the turpentine can remain for long time in the resin, and the changes in structural, morphological, and chemical properties are affected by the temperature. FTIR spectroscopy, before and after thermal treatment, does not show major changes in chemical structures. However, from the samples analyzed with UHPLC-DAD-MS significant differences of the ratios of 20 compounds were observed, which characterize possible chemical reactions, such as decomposition, dehydrogenation, oxidation and isomerization. After heat treatment, the glass transition temperature of resin increased. Color changes are evident: resin becomes darker with increasing the temperature of treatment, apart from the resin heated at 100°C. The chemical changes in the composition of the resin caused by heat treatment need further investigation.

Publisher

Trans Tech Publications Ltd

Reference20 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3