Interrelationship of Fracture Mechanism and Microstructure of TC18 Titanium Alloy

Author:

Ran Xing1,Wang Zhe2,Liu Cheng Cheng3,Li Pei Jie1,Lv Zhi Gang1

Affiliation:

1. Tsinghua University

2. Shaanxi Hongyuan Aviation Forging Co., Ltd.

3. Beijing Xinghang Electro-mechanical Equipment Co.,Ltd

Abstract

The scanning electron microscope (SEM) and optical microscope (OM) were used to study the deformation of TC18 titanium alloy microstructure at 881°C and 896°C. And the basket weave structure fracture mechanism was discussed. The results have been shown: during deformation at 881°C, the TC18 titanium alloy β grain size of about 305μm and the discontinuous grain boundary α phase along the β grain boundary were obtained. With the deformation temperature rising to 896°C, the β grain growth of 510μm and the continuous grain boundary α phase along the straight β grain boundary were obtained. The TC18 titanium alloy fracture toughness decreased from 77.8 MPa·m1/2 to 65.4 MPa·m1/2 as the rising of deformation temperature from 881°C to 896°C. The average β grain size is about 305μm and the discontinuous grain boundary α phase leads to the higher fracture toughness of TC18 titanium alloy forging. The fracture mode of fine β grain and discontinuous grain boundary α phase is the transgranular fracture, while the coarse β grain and continuous grain boundary α phase is the intergranular fracture.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3