The Effect of Fiber Layer Orientation on the Properties of Hybrid Kenaf/Fiberglass Polyester Matrix Composite

Author:

Adnan Nurul Fazlin1,Salim Nurjannah1,Bakar Nurul Huda Abu1,Bin Roslan Rasidi1,Sarmin Siti Noorbaini2ORCID,Mohamad Kassim Mohamad Haafiz3,Mohamad Amini Mohd Hazim4

Affiliation:

1. Universiti Malaysia Pahang

2. Universiti Teknologi MARA (UiTM)

3. Universiti Sains Malaysia

4. Universiti Malaysia Kelantan

Abstract

A hybrid composite is a combination of two or more reinforced in a matrix. Hybrid composite will give better properties as compared to individual fiber-reinforced polymer composites. This research aims to study the effect of different fiber layer orientations on the properties of hybrid kenaf/fiberglass polyester matrix composite. Two types of the composite were produced which are Sample 1, the fiber layer orientation is fiberglass, kenaf fiber, kenaf fiber and fiberglass (FG-K-K-FG), and Sample 2, the fiber layer orientation is fiberglass, kenaf fiber, fiberglass, and kenaf fiber (FG-K-FG-K). The composite is manufactured using the hand lay-up technique and hot pressed. 50 g of unsaturated polyester resin and 12 g of hardener, Methyl Ethyl Ketone Peroxide (MEKP) were mixed and applied on top of every layer of fiber before being compressed at 100°C for 10 minutes. The properties of the hybrid composite were determined by completing five types of tests which are tensile test, impact test, water absorption test, thermogravimetric analysis (TGA), and scanning electron microscope (SEM). The results showed that Sample 2 (FG-K-FG-K) has higher tensile strength compared to Sample 1 (FG-K-K-FG) with the value of 30.97 MPa and 0.23 MPa respectively. For the water absorption test, Sample 1 (FG-K-K-FG) with a value of 239.21% has the highest water absorption properties compared to Sample 2 (FG-K-FG-K) with a value of 180.22%. Samples 1 and 2 have no obvious differences in terms of their thermal stability characteristics for the TGA test. For SEM, it is observed that both samples showed an attachment of adhesive between fiber layers and matrix. The overall conclusion is Sample 2 (FG-K-FG-K) has high mechanical properties but needs improvement for low water absorption.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3