Consideration of Moisture Factor during Material Selection in Plastic Product Design

Author:

Kukcu Burak1ORCID,Dasdemir Buse1

Affiliation:

1. Mesan Lock Inc.

Abstract

This research paper aims to investigate the significance of considering the humidity factor during material selection in plastic product design. Humidity is a crucial environmental parameter that can profoundly influence the properties and performance of plastic materials. To ensure the long-term performance and dependability of plastic products, it is essential to comprehend and take into consideration the impacts of moisture on plastics. Humidity plays a fundamental role in the degradation and functional changes of plastic materials. Moisture absorption can lead to reduced mechanical strength and accelerated degradation processes. The selection of appropriate materials that can withstand humid conditions becomes paramount in product design. For this reason it is important to evaluate the moisture absorption properties of plastic materials. Different polymers exhibit varying degrees of moisture diffusion rates that directly affect their performance in humid environments. Evaluation of moisture measurement results allows designers to make informed decisions during material selection. For this reason, we designed an experiment to investigate which material retains less moisture. In our research, we determined 2 different experimental groups. The first of these groups (type A) was kept under normal conditions by adding glass fiber additive at different rates to the PA66 material, and each product with 3 different additives was tested for moisture for 10 days and the results were recorded. In the second experimental group, type B, the products produced with the same material and additives at the same rate were kept in water for 24 hours, then they were removed from the water and moisture tests were performed. It is aimed to make material selection by interpreting the test results and thus to facilitate the making of designs suitable for use.

Publisher

Trans Tech Publications, Ltd.

Reference8 articles.

1. Effect of hygrothermal aging on the mechanical properties and ductile fracture of polyamide 6: Experimental and numerical approaches;Taktak;Engineering Fracture Mechanics

2. Tensile behavior of thermoplastic composites including temperature, moisture, and hygrothermal effects;Eftekhari;Polymer Testing

3. Moisture transport in PA6 and its influence on the mechanical properties, Continuum Mechanics and Thermodynamics (2020)

4. Effects of hydrothermal aging on moisture absorption and property prediction of short carbon fiber reinforced polyamide 6 composites;Sang;Composites Part B: Engineering

5. Sandberg, J., & Sjölin, S. (2022). Effects of Temperature and Moisture Content on Young's Modulus in Glass Fiber Reinforced Polyamide (Dissertation).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3