Implementation of Large Scale Deep Learning Non-Destructive Methods for Characterizing 4H-SiC Materials

Author:

Leonard Robert1,Conrad Matthew1,Van Brunt Edward1,Witry Jason1,Balkas Elif1

Affiliation:

1. Wolfspeed Inc

Abstract

A whole wafer method for industrial high volume, non-destructive characterizing of extended defects is demonstrated for 150 mm and 200 mm 4H-SiC wafers. Deep learning (DL) coupled with non-destructive techniques (NDT, DL-NDT) involving high volume, fast optical microscopy methods correlates industry accepted chemistry and physics-based etch and diffraction techniques for defect characterization. The application of the DL-NDT method is shown to reproduce defect distributions achieved by accepted etch techniques for extended defects of threading dislocations (TD), basal plane dislocations (BPD), and threading screw dislocations (TSD). An example of algorithm development is described to show progress toward implementing the method, as well as DL-NDT defect density compared to etch density for multiple wafers. The development status for implementing this technique for large-scale industrial wafer production includes etch validation of the results to ensure the technique is consistent and reliable. The ability to use this non-destructive technique ultimately will result in better correlation with device behavior and provide feedback to crystal growth processes to improve substrate wafers, while reducing the need for etch methods.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Radiation

Reference8 articles.

1. Wolfspeed, Inc., "Lucid Motors Integrates Wolfspeed's Silicon Carbide Semiconductors into the Award-Winning Lucid Air", 5 April 2022, https://investor.wolfspeed.com/

2. X.R. Huang et. al., Appl. Phys. Lett. 91, 231903 (2007).

3. R. T. Leonard et. al, Materials Science Forum, Vol. 1004, pp.321-327 (2020).

4. P. Isola et. al., arXiv:1611.07004v3 [cs.CV] 26 Nov 2018.

5. J.J. Sumakeris et. al., Materials Science Forum, Vol. 858, pp.393-396 (2016).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3