Master S-N Curve Fatigue Life Prediction of a Railroad Car Bogie Based on Mesh Insensitive Structural Stress Method

Author:

Türe Süleyman1ORCID,Mugan Ata2

Affiliation:

1. Aselsan Inc.

2. Istanbul Technical University

Abstract

Fatigue life prediction of a welded structure is a complex phenomenon due to the nature of fatigue and the welding process. Additionally, Finite Element Method (FEM) results are extremely sensitive to the size of elements. Therefore, it is difficult to adopt a method to estimate the fatigue life, especially for welded structures. Besides, mesh size independence is a critical issue to perform fatigue life prediction methods that eliminates the need for excessive element numbers in the mesh. This paper investigates the Master S-N Curve Approach (MCA) using the output parameters of the mesh insensitive Structural Stress Method (SSM). MCA based on SSM employs structural stresses recovered from nodal forces and nodal moments. To recover these inputs, FEM model should be established properly. Thus, boundary conditions and applied loads were prepared for the model according to the BS EN 13749:2021. The submodeling technique in ANSYS software was used to analyze the bogie structure. To justify the mesh independence for the model, different mesh sizes were tested. In a specific range for shell bodies, SSM was shown to provide sufficient mesh independence feature. Furthermore, MCA was compared with Hot Spot Stress Method and Nominal Stress Method based on their fatigue life estimations.

Publisher

Trans Tech Publications, Ltd.

Reference9 articles.

1. Fatigue cracking of welded railway bridges: A review;Alencar;Engineering Failure Analysis

2. Heat Input Influence on the Fatigue Life of Welds from Steel S460MC;Moravec;Metals,2020

3. A finite element post-processor for fatigue assessment of welded structures based on the Master S-N curve method;Alencar;International Journal of Fatigue

4. IIW, Recommendations for fatigue design of welded joints and components. International Institute of Welding, (2016)

5. P. Dong, J. Zhang, JK. Hong, Structural stress calculation scheme. Battelle's Patent Application, 2000.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3