Comparison of Conventional and Conformal Cooling Channels in the Production of a Commercial Injection-Moulded Component

Author:

Kariminejad Mandana1ORCID,Kadivar Mohammadreza1,McAfee Marion1,McGranaghan Gerard1,Tormey David1

Affiliation:

1. Institute of Technology Sligo

Abstract

Cooling channels are critical in injection mould tooling as cooling performance influences component quality, cycle time, and overall process efficiency. Additively Manufactured moulds allow the incorporation of cooling channels conforming to the shape of the cavity and core to improve heat removal. These conformal channels can reduce the cycle time, reduce mould temperature, and enhance the temperature uniformity on the mould's surface, leading to improved quality of the moulded components and reduced wastage in the production. The design of such channels is more challenging than conventional channels; thus, Computer-Aided Engineering (CAE) has a significant role within the design process. In this paper, a novel design for conformal cooling channels for the production of a commercial component from an industrial partner is investigated. This component had issues of high cycle time and a high defect rate due to residual stresses, resulting in component shrinkage. First, the existing conventional drilled cooling channels in the mould were simulated in Autodesk Moldflow Insight to evaluate temperature distribution and cycle time. Based on the temperature distribution, conformal cooling channels were designed in Solidworks, addressing the problem areas. Next, a simulation of fluid flow in the conformal channels was conducted in ANSYS-Fluent to ensure equal flow distribution in the entire circuit, iteratively arriving at an optimal configuration. Finally, the results of the new conformal channels, including mould temperature and cycle time, were compared with conventional cooling channels in simulation. The results showed a significant reduction in cycle time and improvement in the temperature distribution, thereby minimising residual stresses and shrinkage.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3