Effects of Thermal Cycling on the Mechanical Strength of TPU 3D-Printed Material

Author:

Espino Michaela T.1,Tuazon Brian Jumaquio1,Dizon John Ryan C.1

Affiliation:

1. Bataan Peninsula State University

Abstract

Fused Deposition Modelling (FDM) is a three-dimensional (3D) printing technology known for its low-cost rapid manufacturing of parts. Nowadays, various industries such as automotive, aerospace, and maritime are using this technology to manufacture 3D-printed parts that have undergone high temperatures. The material used in this study is the Thermoplastic Polyurethane (TPU), which is the most commonly-used type of Thermoplastic Elastomer (TPE) in 3D printing. This material is a combination of substances from the qualities and characteristics of both thermoplastic and vulcanized thermoset rubber. TPU has excellent abrasion resistance, hardness, chemical, and thermal resistance properties. In addition, TPU is a great fit for making hoses, gaskets, and seals due to its oil and grease resistance properties. Due to the growing application of 3D-printed materials at elevated temperatures, this study aims to characterize the tensile strength of TPU 3D-printed materials when thermal cycled. The test results concluded that the tensile properties of TPU 3D-printed specimens were significantly influenced by the number of thermal cycles it was subjected to. The samples that underwent four thermal cycles exhibited the highest modulus of elasticity and stress at 200% strain. While samples which underwent 2, 8, and 16 thermal cycles resulted to a higher modulus of elasticity and tensile stress at 200% strain than the untreated specimen.

Publisher

Trans Tech Publications, Ltd.

Reference26 articles.

1. 3D Printing Technology and Materials for Automotive Application: A Mini-Review;Tuazon;Key Engineering Materials,2022

2. Flame Retardancy of Thermoplastic Polyurethane Using Phosphorus-containing Flame Retardants;Yu;IOP Conference Series: Materials Science and Engineering

3. Information on https://omnexus.specialchem.com/selection-guide/thermoplastic-polyurethanes-tpu/key-applications

4. Information on https://omnexus.specialchem.com/selection-guide/thermoplastic-polyurethanes-tpu (accessed Aug. 26, 2022).

5. Preliminary Study on Mechanical Aspects of 3D-Printed PLA-TPU Composites;Żur;Materials,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3