Affiliation:
1. SEGi University
2. Universiti Kebangsaan Malaysia
Abstract
Stainless steel SS304 is extensively used in dental applications for its high strength, hardness, and corrosion resistance. However, Conventional dental joining techniques such as soldering and fusion welding, reliant on elevated temperatures and toxic fluxes, present substantial oral health risks, leading to potential health deterioration due to toxic emissions. The study proposes the utilization of a microwave hybrid heating process (MHH) for joining stainless steel SS304 (15mm × 7.9mm × 0.2mm) and pure zinc metal powder (44 µm, 99% purity), citing its enhanced efficiency, speed, precision, and diminished environmental footprint as key characteristics without fume. It explores heat processing between 30°C to 60°C and cold temperature processing from 0°C to 10°C to analyze alterations in hardness properties and microstructures. The study identified a direct correlation between temperature and microhardness, observing an increase in microhardness with rising temperatures. Optimal microhardness of 208.6 HV was achieved at 60°C during a 3 min heat treatment. Cold temperatures induced slight deformation and grain transformation, while heat treatment enhanced grain density and hardness, particularly in the strongly bonded boundary layer, with experimental and predicted values using Fuzzy logic showing promising outcomes and errors below 10%. In conclusion, the study demonstrates that achieving a specific hardness value in stainless steel joints is highly desirable for dental applications, alongside the observation of favorable microstructures. These findings underscore the potential of MHH to propel dental technology forward and promote sustainable practices while addressing environmental concerns.
Publisher
Trans Tech Publications, Ltd.
Reference34 articles.
1. A new approach to joining of bulk copper using microwave energy;Srinath;Materials & Design
2. Joining of Mild Steel Plates Using Microwave Energy;Bansal;Advanced Materials Research,2012
3. M.S. Srinath, A.K. Sharma, P. Kumar, A novel route for joining of austenitic stainless steel (SS-316) using microwave energy, Proc Inst Mech Eng B J Eng Manuf P I MECH ENG B-J ENG. (2017).
4. Joining of Inconel-625 alloy through microwave hybrid heating and its characterization;Badiger;Journal of Manufacturing Processes
5. Characterization of Joint Developed by Fusion of Aluminum Metal Powder through Microwave Hybrid Heating;Singh;Materials Today: Proceedings