Regularized CNN Model for Image Forgery Detection

Author:

Kumar Amit1,Tiwari Namita1,Chawla Meenu1

Affiliation:

1. Maulana Azad National Institute of Technology

Abstract

Digital images play a very important role in different areas in the modern technological scenario. Changing and manipulating the content of the digital image is a very easy task by using powerful image editing tools. In today's technology environment, digital photographs serve a critical function in a variety of fields. Using advanced image editing tools, changing and rearranging the content of a digital image is a simple operation. It is now possible to add, edit, or remove essential aspects from an image despite leaving any perceptible alterations. In addition to determining if the picture is authentic or forged, the metadata of the image may be examined, however, metadata can be altered. In this example, the authors use Error Level Analysis on each picture and matching parameters for error rate analysis to detect images of modifications using Deep Learning on a dataset of a false image and real photos. This experiment shows that by running through 100 epochs, we obtain the best training accuracy of 99.17 % and 95.11 % of accuracy validating.

Publisher

Trans Tech Publications Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3