Affiliation:
1. Université Mustapha Stambouli
2. University of Biskra
3. University of Sidi Bel Abbes
4. Jordan University of Science and Technology
5. King Abdulaziz University
Abstract
This article presents an analytical approach to explore the free vibration behaviour of new functionally graded carbon nanotube-reinforced composite beams (FG-CNTRC) based on a two-variable higher-order shear deformation theory and nonlocal strain gradient theory. The beams resting on the Pasternak elastic foundation, including a shear layer and Winkler spring, are considered. The kinematic relations of the shaft are proposed according to novel trigonometric functions. The vibrated nanobeam’s motion equations are obtained via the classical Hamilton’s principle and solved using Navier’s steps. A comparative evaluation of results against predictions from literature demonstrates the accuracy of the proposed analytical model. Moreover, a detailed parametric analysis checks for the sensitivity of the vibration response of FG nanobeams to nonlocal length scale, strain gradient microstructure scale, material distribution, constant spring factors, and geometry. The current work presents the free vibration problem of supported (FG-CNTRC) beams reinforced by different patterns of carbon nanotube (CNT) distributions in the polymeric matrix.
Publisher
Trans Tech Publications, Ltd.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献