Prediction of Forming Limit Diagram Using the Marciniak-Kuczynski Method for Ti-6Al-4V Using Different Material Models

Author:

Lonardi Claudio1,Corallo Luca1,Verleysen Patricia1

Affiliation:

1. Ghent University

Abstract

The forming limit diagram (FLD) is a widely used tool to assess the formability of a metal sheet [1]. The current study aims to investigate the influence of strain rate, material anisotropy and hardening on the FLD of Ti-6Al-4V predicted by the well-known Marciniak-Kuczynski (M-K) method. The tensile data of quasi-static (8 10-5 s-1), intermediate (0.5 s-1) and dynamic experiments (approximately 1000 s-1) on Ti-6Al-4V sheet are available at three different orientations, with respect to the rolling direction: 0°, 45° and 90°. Different hardening models are taken into account. Also, von Mises and Hill yield criterion are considered. The results show that the influence of the hardening law on FLD is significant. In particular, the most conservative limit strains are predicted by the Voce law because of its saturation characteristic. The yield criterion is found to only affect the right part of the FLD. Regarding the strain rate influence, the left part of the FLD is mainly dominated by the amount of uniform elongation, while the right part is strongly dependent on the yield function used. Therefore, for this region the effects of strain rate and yield function are difficult to distinguish. Finally, the effect of material anisotropy on the FLD is significant. Under quasi-static conditions, the Lankford coefficient seems to be the driving factor in uniaxial and equibiaxial deformation. However, in plane strain conditions the effect of the strain hardening exponent is dominant.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3