Eryngo Extract-Mediated Green Synthesis of Silver Nanoparticles and its Antibacterial Activity against Resistance Strains

Author:

Keykhaee Zahra1,Bahmani Amin1,Sattarahmady Naghmeh2,Jahromi Marzieh Ghanbari3,Shokri Ehsan4

Affiliation:

1. University of Tehran

2. Shiraz University of Medical Sciences

3. Islamic Azad University

4. Agricultural Research, Education, and Extension Organization (AREEO)

Abstract

In the present study, a simple and fast approach was developed for the green synthesis of silver nanoparticles by using Eryngium campestre (Eryngo) extract prepared in boiling water. People have widely used the Eryngo plant as a vegetable, food, and medicine around the world. The dried leaves of Eryngo extracted in boiling water yielded approximately 67 mg/g (6.6%) solid residue. The extract had a high antioxidant activity of 71 %, which was rich in total phenolic and flavonoids as revealed through colorimetric assays. For preparing nanoparticles, silver nitrate was added to the plant extract diluents and kept until the solution color changed with a sharp indicative peak of AgNPs that appeared at 450 nm. In addition, UV/Vis, TEM, FESEM, DLS, EDS, and XRD analysis were used to characterize the as-synthesized AgNPs. The results confirmed the spherical shape and nano nature of AgNPs with an average size of 32 nm based on Fe-SEM and TEM observations. The prepared AgNPs also shown moderate free radical scavenging activity (60%) in DPPH test and exhibit antibacterial activity at low concentration (50 μg/mL) toward both gram-positive and gram-negative bacteria. In this respect, the inhibition zone was higher in gram-positive bacteria and the sensitivity order of S.aureus > MRSA > B.subtilis > P.aeruginosa > E.coli was achieved in response to Eryngo AgNPs. Interestingly, Eryngo AgNPs at low concentration were efficient on MRSA, as an antibiotic-resistant strain of S.aureus.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3