Classification of Pulmonary Crackle and Normal Lung Sound Using Spectrogram and Support Vector Machine

Author:

Rizal Achmad1,Priharti Wahmisari1,Rahmawati Dien1,Mukhtar Husneni1

Affiliation:

1. Telkom University

Abstract

Crackles is one of the types of adventitious lung sound heard in patients with interstitial pulmonary fibrosis or cystic fibrosis. Pulmonary crackles of discontinuous short duration appear on inspiration, expiration, or both. To differentiate these pulmonary crackles, the medical staff usually uses a manual method, called auscultation. Various methods were developed to recognize pulmonary crackles and distinguish them from normal pulmonary sounds to be applied in digital signal processing technology. This paper demonstrates a feature extraction method to classify pulmonary crackle and normal lung sounds using Support Vector Machine (SVM) method using several kernels by performing spectrograms of the pulmonary sound to generate the frequency profile. Spectrograms with various resolutions and 3-fold cross-validation were used to divide the training data and the test data in the testing process. The resulting accuracy ranges from 81.4% - 100%. More accuracy values of 100% are generated by a feature extraction in several SVM kernels using 256 points FFT with three variations of windowing parameters compared to 512 points, where the best accuracy of 100% was produced by STFT-SVM method. This method has a potential to be used in the classification of other biomedical signals. The advantages of that are that the number of features produced is the same as the N-point FFT used for any signal length, the flexibility in the STFT parameters changes, such as the type of window and the window's length. In this study, only the Keiser window was tested with specific parameters. Exploration with different window types with various parameters is fascinating to do in further research.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Examination of Training Data Expansion for Detection of Abnormal Respiration and Patients;2023 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT);2023-07-13

2. A review on lung disease recognition by acoustic signal analysis with deep learning networks;Journal of Big Data;2023-06-12

3. Acoustic-Based Deep Learning Architectures for Lung Disease Diagnosis: A Comprehensive Overview;Diagnostics;2023-05-16

4. Acoustic HMMs to Detect Abnormal Respiration with Limited Training Data;IEICE Transactions on Information and Systems;2023-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3