Affiliation:
1. Suez University
2. University of Osijek
3. Jazan University
4. University of Science and Technology
5. University of Windsor
6. State University of the Northern Rio de Janeiro
Abstract
Marble powder (MP) emerges as a byproduct during the cutting and grinding operations of marble stone, constituting a non-biodegradable fine powder. This residue, originating from the marble stone industry, holds the potential for sustainable development when incorporated into self-compacting concrete (SCC). A thorough examination of existing literature underscores the substantial promise of MP as either a supplement or substitute for both cement and fine aggregate in concrete compositions. The literature review provides a comprehensive overview of the incorporation of MP in SCC. An evident trend in the reviewed studies indicates that as the proportion of MP used instead of fine aggregate increases, the fresh properties of the concrete tend to diminish. Nevertheless, the chemical composition of marble, containing CaCO3 and SiO2, contributes positively to the mechanical properties of the concrete. Notably, when MP is employed as a replacement for fine aggregate at ratios ranging from 15% to 75%, a discernible enhancement in mechanical properties, ranging from 10% to 30%, is observed. Conversely, substituting MP for cement in quantities exceeding 20% exhibits detrimental effects on both the fresh and mechanical properties of the concrete. The impact of MP on various facets of SCC, including workability, setting times, compressive strength (CS), splitting tensile strength (STS), and flexural strength (FS) has been thoroughly investigated and discussed. This scrutiny contributes valuable insights into the potential advantages and challenges associated with the incorporation of MP in SCC.
Publisher
Trans Tech Publications Ltd