Tensile Strength Evaluation of FDM 3D-Printed Polymer Using Taguchi Methodology and Range Analysis

Author:

Espino Michaela T.1,Tuazon Brian Jumaquio1,Dizon John Ryan C.1

Affiliation:

1. Bataan Peninsula State University

Abstract

Fused Deposition Modeling (FDM) is an Additive Manufacturing technology where a heated plastic filament will be placed on the bedplate layer by layer until the 3D object is printed. The mechanical properties of the ABS FDM 3D-printed parts are not yet determined or estimated prior printing. Hence, the goal of this study is to identify the optimum 3D printing parameters based on the tensile properties of ABS FDM 3D-printed polymer parts. Taguchi approach and Range Analysis were used in finding the optimum 3D printing parameters in which different parameters were considered to meet the requirements of the orthogonal arrays. Five pieces of 3D-printed dumbbell-shaped tensile specimen were prepared for each parameter. The tests followed the ASTM D638-14 standard. The result for the optimum 3D printing configuration of ABS FDM 3D-printed material were concluded as the values with the highest tensile strength.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Reference15 articles.

1. ASTM F2792-12a, Standard Terminology for Additive Manufacturing Technologies, F42.19, Ed. West Conshohocken, PA: ASTM International, 2012. [Online]. Available: www.astm.org

2. A study of the state-of-the-art rapid prototyping technologies;Chua;The International Journal of Advanced Manufacturing Technology

3. Mechanical characterization of 3D-printed polymers;Dizon;Additive Manufacturing

4. Post-Processing of 3D-Printed Polymers;Dizon;Technologies,2021

5. Mechanical characterization of parts fabricated using fused deposition modeling;Bellini;Rapid Prototyping Journal

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3