Study on Optical Energy Gap and the Thickness of Boron Doped Graphenic Carbon (B-GC) Film Prepared by Nanospray Method

Author:

Firdaus Aulia Anisa1,Purwandari Endhah1,Asih Retno1ORCID,Sholih Ahmad1,Darminto Darminto1

Affiliation:

1. Institut Teknologi Sepuluh Nopember

Abstract

Graphenic carbon (GC) provides a potential ability as photovoltaic material due to its tunable properties. Here, we investigate the optical energy gap and the thickness of B-GC material as a p-type in solar cell application. The GC was prepared from old charcoal powders of coconut shells by heating process at 400°C and B-GC powders were prepared by wet mixing method using boric acid as B atom source. B-GC films were then prepared by employing nebulizer as a nanospraying method. All samples were examined through various characterization techniques such as X-Ray Diffarction (XRD), SEM cross section, and UV-Vis spectroscopy. The amorphous characteristic of B-GC is confirmed by broad peaks in XRD patterns, similar to that of reduced graphene oxide (rGO). The present of B along with O and dominant C elements is determined by SEM-EDX result. The B dopants affect the optical bandgap energy (Eg) of GC as an intrinsic material. The thickness of B-GC films was found to be thinner than in a previous study that used a similar method but different equipment. The average thickness of B-GC films is in the range of 127 to 420 nm, followed by an increase in the deposition time for 5 to 20 s. Estimation of the Eg value indicated that B-GC has an energy gap around 2 eV, which is most suitable as a window layer in solar cell applications.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3