Improving High Speed Switching Graphene Transistors Using Bandgap Engineering

Author:

Benfdila Arezki1ORCID

Affiliation:

1. Mouloud Mammeri University

Abstract

Graphene transistors are considered to be the successors’ of MOS transistors for the next generation of advanced integrated circuits. However, graphene suffers from the absence of energy band gap to experience a semiconductor like characteristics. In order to instigate a bandgap in graphene, several techniques and methods are introduced to beak its symmetry. The most common graphene form is the Graphene Nanoribbon (GNR) sheets. Few techniques have been used to grow GNR sheets. However, the main methods that gave better results are bottom-up techniques mainly based on nanotechnology principles. The present paper deals with the investigation of the bandgap engineering approach targeting an increase in graphene transistors switching characteristics leading to higher maximum frequencies applications. The GNR sheets are synthesized using bottom-up CVD based techniques yielding controlled electronics and physical characteristics. Results obtained on few GNR transistor samples compared to other forms of transistors showed good agreements and found to be close to that of standard silicon devices. Moreover, the GNRFETs frequency response is directly related to the bandgap of the material. It has been evidenced that gap modulation modulates the transistor frequency response. Whereas using other techniques, this cannot be achieved. We have found that small values of gap (100-300 meV) led to high mobility and frequencies of thousands of GHz. However, the edge quality limits the maximum frequencies as it induces traps in the graphene generated gap.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

Reference35 articles.

1. K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab and K. Kim, A roadmap for graphene, Nature, Vol. 490, 192-200 (2012).

2. Andrea. C. Ferrari, Francesco Bonaccorso, Vladimir Fal'ko, Konstantin S. Novoselov, Stephan Roche, Peter Bøggild, Stefano Borini, Frank H. L. Koppens, Vincenzo Palermo, Nicola Pugno, José A. Garrido, Roman Sordan, Alberto Bianco, Laura Ballerini, Maurizio Prato, Elefterios Lidorikis, Jani Kivioja, Claudio Marinelli, Tapani Ryhänen, Alberto Morpurgo, Jonathan N. Coleman, Valeria Nicolosi, Luigi Colombo, Albert Fert, Mar Garcia-Hernandez, Adrian Bachtold, Grégory F. Schneider, Francisco Guinea, Cees Dekker, Matteo Barbone, Zhipei Sun, Costas Galiotis, Alexander N. Grigorenko, Gerasimos Konstantatos, Andras Kis, Mikhail Katsnelson, Lieven Vandersypen Annick Loiseau, Vittorio Morandi, Daniel Neumaier, Emanuele Treossi, Vittorio Pellegrini Marco Polini, Alessandro Tredicucci, Gareth M. Williams, Byung Hee Hong, Jong-Hyun Ahn, Jong Min Kim, Herbert Zirath, Bart J. van Wees, Herre van der Zant, Luigi Occhipinti, Andrea Di Matteo, Ian A. Kinloch, Thomas Seyller, Etienne Quesnel, Xinliang Feng, Ken Teo, Nalin Rupesinghe, Pertti Hakonen, Simon R. T. Neil, Quentin Tannock, Tomas Löfwander and Jari Kinaret, Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, Nanoscale, Vol.7 Issue 11, 4598-4810, (2015).

3. Frank schwierz; Graphene Transistors, Nature Nanotechnology, Vol. 5, 487-496 (2010).

4. G. Fiori, F. Bouaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, A. K. Banerjee and L. Colombo, Electronics based on Two-dimentional Materials; Nature Nanotech., Vol.10 Article Number 1038, 1-6, (2014).

5. H. Shu-Jen, A. V Garcia, S. Oida, J.A Jekin and W. Haenshs, Graphene Radio Frequency Receiver Integrated Circuit, Nature Commun., Vol. 5, 3086, 1-5, (2014).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3