Experimental Analysis on Flow Field Pattern of PEM Fuel Cells

Author:

Prasad Devendra1ORCID,Srinivasulu G. Naga2,Bharti Ajaya1ORCID,Kumar Naveen1,Mohd Azam Syed1

Affiliation:

1. Motilal Nehru National Institute of Technology Allahabad

2. National Institute of Technology Waranga

Abstract

The polymer electrolyte membrane (PEM) fuel cells flow fields channels serve the same roles as nutrient and reactant circulation systems in plants and animals, so bio-inspired flow field channels with a similar could improve reactant uniform transport efficiency and boost fuel cell performance. In this analysis, the lung channel configuration of a humane lung and a tree leaf bio-inspired flow field channels are used as an anode and cathode bipolar plate. A channel model is developed for three new flow field patterns designs: leaf design, lung design and triple-serpentine. It has been observed that the performance improvement in terms of power in the bio-inspired flow field is 13.32% more than the triple serpentine. This indicates the bio-inspired design has good performance than other flow field design. Further a parametric steady is carried out experimentally to study the effect of cell operating temperature, anode and cathode humidity, hydrogen and oxygen flow rate on the cell performance.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3